Epigenetic Age Analysis Service

The Most Accurate Biological Age Quantification Service

Header Banner for Human Epigenetic Age Analysis

What is the DNAge Epigenetic Clock

Aging is the largest risk factor for many chronic diseases including cancer, cardiovascular disease, arthritis, osteoporosis, and type 2 diabetes. Therefore, quantifying the biological age is a fundamental step of understanding diseases and designing anti-aging intervention. Dr. Steve Horvath's epigenetic clock, the gold standard of aging clocks, predicts biological age by measuring DNA methylation at multiple sites [1, 2].

Accelerated epigenetic age has been associated with a lot of age-related conditions and diseases by independent research studies such as certain types of cancer [3, 4], obesity [5] and frailty [6]. Recently, a small clinical trial showed that the epigenetic clock, in agreement with the immunological and thymic measurements, could be turned back by a 3-part treatment cocktail. This indicates the power of epigenetic clock in identifying the effectiveness of anti-aging intervention on an accelerated timescale [7].

[1] Horvath, S., et al., An epigenetic clock analysis of race/ethnicity, sex, and coronary heart disease. Genome Biol, 2016. 17(1): p. 171.
[2] Horvath, S., DNA methylation age of human tissues and cell types. Genome Biol, 2013. 14(10): p. R115.
[3] Durso, D.F., et al., Acceleration of leukocytes’ epigenetic age as an early tumor and sex-specific marker of breast and colorectal cancer. Oncotarget, 2017. 8(14): p. 23237-23245.
[4] Ching, C.Y., et al., Accelerated epigenetic aging in bladder cancer patients. 2019, American Association for Cancer Research: Cancer Res 2019;. p. Abstract nr 828.
[5] Quach, A., et al., Epigenetic clock analysis of diet, exercise, education, and lifestyle factors. Aging (Albany NY), 2017. 9(2): p. 419-446.
[6] Breitling, L.P., et al., Frailty is associated with the epigenetic clock but not with telomere length in a German cohort. Clin Epigenetics, 2016. 8: p. 21.
[7] Fahy, G.M., et al., Reversal of epigenetic aging and immunosenescent trends in humans. Aging Cell, 2019. 18(6): p. e13028.
[8] Hayano, M., et al., DNA Break-Induced Epigenetic Drift as a Cause of Mammalian Aging. bioRxiv, 2019: p. 808659.
[9] Zannas, A.S., et al., Lifetime stress accelerates epigenetic aging in an urban, African American cohort: relevance of glucocorticoid signaling. Genome Biol, 2015. 16: p. 266.
[10] Jovanovic, T., et al., Exposure to Violence Accelerates Epigenetic Aging in Children. Sci Rep, 2017. 7(1): p. 8962.
[11] Wolf, E.J., et al., Accelerated DNA methylation age: Associations with PTSD and neural integrity. Psychoneuroendocrinology, 2016. 63: p. 155-62.